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Appendix B from A. L. Šizling et al., “Between Geometry and Biology:
The Problem of Universality of the Species-Area Relationship”
(Am. Nat., vol. 178, no. 5, p. 602)

Considerations of Consecutive Constraints
Constraints on the Jaccard Index

The Jaccard index between plots at a given scale constrains the Jaccard index at a coarser scale. Imagine four
adjacent plots, A1, A2, B1, and B2 (fig. 3). Assume equal Jaccard indices between all pairs of these four plots,
denoted as Jn (we will relax this assumption below). We further denote the Jaccard index between the larger
plots A and B ( , ) as . By definition, , where is theA p A1 ∪ A2 B p B1 ∪ B2 J J : p S /S S /Sn�1 n�1 A∩B A∪ B A∩B A∪ B

number of species shared by the plots A and B and is species richness of both plots combined. If weSA∪ B

combine this definition with the mathematical identity , we get a formula for speciesS { S � S � SA∪ B A B A∩B

richness of the combined plot, . The same applies to the small subplots, that is,S p (S � S ) / (1 � J )A∪ B A B n�1

, , and so on. Similarly, the number of species sharedS p (S � S ) / (1 � J ) S p (S � S ) / (1 � J )A1∪ B1 A1 B1 n A2∪ B2 A2 B2 n

by the two small subplots follows (by the definition of the Jaccard index) S p J S p J (S � S ) / (1 �A1∩B1 n A1∪ B1 n A1 B1

. The number of species shared by the two small plots is the lowest possible number of species that can beJ )n

shared by the larger plots A and B, which happens if all pairs of the small subplots share the same species (fig.
3). On the other hand, if each pair of the small subplots shares a different set of species, then plots A and B
share species (we assume ; this condition will also be relaxed later; fig.4S S � S � S � SA1∩B1 A1∩B1 A1∩B2 A2∩B1 A2∩B2

3). The actual number of species shared by plots A and B thus lies between one and four times . ThisSA1∩B1

reasoning obviously applies in the case of a transect where the plots are arranged in a row (e.g., A1, A2, B1, B2)
as well.

Let us introduce parameter K, whose value is between 1 and 4, so that

KJ (S � S )n A1 B1S p KS p . (B1)A∩B A1∩B1 1 � Jn

Similarly, . Combining the previous two equations with the definitionS p [2 (S � S ) / (1 � J )]/ (1 � J )A∪ B A1 B1 n�1 n

of (eqq. [7], [8]) follows.Jn�1

The constraints introduced above can be derived under broader assumptions. We can relax both the
assumptions that Jaccard indices at a finer scale, Jn, and a number of shared species between the smaller plots,

, do not vary with space. In this case we need to replace only with the mean valueS S S p (S �Ai∩Bj A1∩B1 A1∩B1Ai∩Bj

and the Jaccard index with an effective value that is defined to have the same effectS � S � S ) /4A1∩B2 A2∩B1 A2∩B2

as the mean value of . Technically, the derivation remains the same. Unlike in the above derivation, theJ/ (1 � J)
parameter K cannot reach the limit of 1 as long as spatial variability in species richness exists. The reason is that
if we define K as

S p KS , (B2)A∩B Ai∩Bj

where , then . Hence,S p (S � S � S � S ) /4 S ≥ max {S , S , S , S } K ≥A1∩B1 A1∩B2 A2∩B1 A2∩B2 A∩B A1∩B1 A1∩B2 A2∩B1 A2∩B2Ai∩Bj

. As a result, K is higher than 1 ( ) if varies spatially. Onmax {S , S , S , S } /S ≥ 1 K 1 1 SA1∩B1 A1∩B2 A2∩B1 A2∩B2 Ai∩BjAi∩Bj

the other hand, geometry does not prevent the K from reaching its upper limit. The reason is that S {A∩B

if all the smaller subplots share unique sets of species. In such a caseS � S � S � S S {A1∩B1 A1∩B2 A2∩B1 A2∩B2 A∩B

and . (Note, however, that the plots cannot share unique sets of species if z is low, and thus the4S K p 4Ai∩Bj

upper limit of K is in this case.) This leads to the prevalence of high K values and consequently a1/Jn

decreasing z-D relationship in most cases.
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The Link between z and J (Eq. [9])

There are several ways to derive the relationship between J and z. The easiest one is to start with the definition
of the Jaccard index, , which is equivalent to . It follows thatJ p S /S J p (S � S � S ) /S J � 1 pA∩B A∪ B A B A∪ B A∪ B

, where is the mean across SA and SB. Therefore, . Equation (9)2S /S S ln (J � 1) p ln 2 � (ln S � ln S )A∪ B A∪ BAB AB AB

follows directly from the equation above and the definition of z ( ). The samez: p (ln S � ln S ) / ln 2A∪ B AB

relationship between J and z follows from a result of Koleff et al. (2003). They expressed the Jaccard index as
and z as . It follows thatJ p a/ (a � b � c) z p 1 � ln [(2a � b � c) / (a � b � c)]/ ln 2 J � 1 p (2a � b �

, hence equation (9).c) / (a � b � c)
Both of the above derivations ignore spatial variability in the Jaccard index. We thus offer a more general

derivation that shows that the Jaccard index in equation (9) is the effective Jaccard index that drives species
abundance distributions (SADs; Šizling et al. 2009a, 2009c). It starts from the equation

f p f � Jf * f (B3)A∪ B A A c A

(Kůrka et al. 2010; Šizling et al. 2009a, 2009c), where captures the SAD of two merged plots A and B andfA∪ B

fA captures the abundance distribution of subplot A (fig. 3). The function capturing the distribution of subplot B,
fB, is missing from equation (B3) since we assume for simplicity that the two subplots (A and B) have similar
SADs, so that . The parameter J is the assumed effective Jaccard index between the two adjacentf { fB A

subplots, A and B, and is an operator of correlated convolution (for broader discussion of all assumptions see*c

Kůrka et al. 2010).
Calculating the first moment for each side of equation (B3) (or, simply, say, estimating a mean value of the

variables drawn from the distributions), it follows that , regardlessE ( f ) p E ( f ) � J2E ( f ) p (1 � 2J) E ( f )A∪ B A A A

of the particular model of the operator of the correlated convolution used (for various models of correlated
convolution, , see Šizling et al. 2009a; Kůrka et al. 2010; for the universality of the equation* E ( f * f ) pc c

, see the proposition below). Since and2E ( f ) E ( f ) � I/S

D � ln 2 p D � z ln 2, (B4)A A∪ B A

where (see fig. 1a; note relabeling and ), it follows thatD p ln I /S � p 2 A ∪ B p 2A z � [ln E ( f ) �i A A∪ Bi i

, hence equation (9) (see bold line in fig. 4a). Note that the effective value of the Jaccard indexln E ( f )]/ ln 2 � 1A

can be estimated as the mean across all adjacent equal-sized plots of a given area, as shown in figure 4a.
Proposition. is independent of a particular model of correlated convolution.E ( f * f ) p 2E ( f )c

Evidence. regardless of the particular model of correlated convolution. It followsE ( f * f ) p E ( f ) � E ( f )x c y x y

that , considering that . Standard convolution gives a distribution of numbersE ( f * f ) { 2E ( f ) f { f f * f x �c x y x y 1

, , ..., , with each xi and yi being independently drawn from distribution fx or fy, respectively.y x � y x � y1 2 2 n n

Correlated convolution gives a distribution of numbers , , ..., , with each xi and yi beingx � y x � y x � y1 1 2 2 n n

drawn from distribution fx or fy, respectively; however, yi depends on xi in this case. Nonetheless, when
computing the mean of , , ..., , we can separate the corresponding x and y from each otherx � y x � y x � y1 1 2 2 n n

( ), which nullifies any effect of their mutual¯ ¯� (x � y ) /n p (� x �� y ) /n p � x /n �� y /n p x � yi i i i i i

dependence. Finally, note that and .¯ ¯x � E ( f ) y � E ( f )x y

Consecutive Constraints

The value of zn at the finer scale determines an envelope of possible values at the consecutive scale. Azn�1

particular drawn from the envelope for a given Dn then determines (fig. 1a), and this process can bez Dn�1 n�1

applied repeatedly to construct possible shapes of the z-D relationship. These constraints are calculated as
and (K obeys eq. [8]). The latter is given by1�znD p D � (1 � z ) ln 2 z � ln [2 � K (2 � 1)]/ ln 2n�1 n n n�1

equations (7) and (9), and the former follows from figure 1a, particularly from the equation D � ln 2 p D �A A∪ B

, where (note relabeling and in fig. 1a).z ln 2 D p ln I /S � p 2 A ∪ B p 2AA i i i

Is z Increasing or Decreasing with D?

Equations (7) and (8) suggest that z can be either increasing or decreasing when doubling area (i.e., when
increasing D). However, there is actually a much higher chance that the z-D relationship is decreasing and
downward decelerating, as predicted by Harte et al. (2009). The critical value of K ( ) that separates K withKC

increasing and decreasing z values is found by setting , and it obeys . If ,J p J K p 2/ (1 � J ) 1 ≤ K ! Kn�1 n C n C
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then the Jaccard index is decreasing and z is increasing when doubling the area; if , thenK ! K ≤ min (4, 1/J )C n

the Jaccard index is increasing and z is decreasing with increasing D (fig. 4c). The apparent disproportion
between extents of K values below and above the critical K (fig. 4c) is prominent for high z, while this
proportion approaches 0.5 for low z. Hence, if taking a null assumption that K values are distributed regularly
(or symmetrically) within these constraints, we should expect either (i) a steep, decreasing z-D relationship if z is
high or (ii) little decrease in the z-D relationship if z is low. Overall, we should expect a decreasing, downward-
decelerating (i.e., hollow) z-D relationship, as predicted by Harte et al. (2009). Nonetheless, we could also expect
some deviations from this overwhelming trend toward z increasing with D, particularly for low z, that is,
especially at large scales.

The Slope z Approaches 1 Where D Approaches 0

The reason for the increase of the SAR slope at fine spatial scales is that if we follow the SAR (fig. 1a) toward
smaller areas, we necessarily approach the individual-area relationship (IAR) with a slope of 1 (ln I p ln r � ln A
for ; see “Thesis I” in app. A). Thus, the distance between the SAR and the IAR, D, approaches 0, andI p rA
the slope of the logarithmically transformed SAR, z, approaches 1 unless (scenario 1) we have to stop at some
privileged small area (the very beginning of the SAR) or (scenario 2) the SAR and IAR touch each other at
some scale and the SAR abruptly branches off from the IAR. However, neither scenario is likely to happen.
(Scenario 1) There is no privileged area at which to stop, as species richness and number of individuals are
mean values applicable to any area. It has long been known that the species richness of an assemblage can be
captured in terms of probabilities of occurrences of individual species; particularly, it is a summation of the
probabilities across all the species that may occur in the focal assemblage (Coleman 1981; He and Legendre
2002; Šizling and Storch 2004). As these probabilities can be substantially lower than 1, neither the SAR nor the
IAR has a lower limit. (Scenario 2) The IAR rises more steeply than the SAR, but the two curves approach each
other for low D without crossing (as there cannot be more species than individuals in a given area). The SAR
must thus either touch the IAR or approach it asymptotically with z approaching 1. If the SAR touches the IAR,
it inevitably scales down with z precisely equal to 1, as it cannot stop at a particular logarithmically transformed
area (see scenario 1). In both of the cases, however, the consecutive slope of the logarithmically transformed
SAR is either exactly or nearly 1. The reason is that if , then (i.e., if , then ),J p 0 J � 0 z p 1 z � 1n n�1 n n�1

which follows from equation (7). Intuitively, low Jaccard indices between small patches A1, A2, B1, and B2 are
unlikely to produce a high Jaccard index between the larger patches A and B.

The Meaning of K

The higher the value of K is within the envelope given by the particular , the lower the following value ofz zn n�1

will be. Let us now focus on figure 4c, particularly on a line parallel to the Y-axis, because only those values of
K with equal z are mutually comparable. Let us have two different K values for one particular z, so that .K ! KA B

This inequality implies an inequality between corresponding subsequent z values (and Jaccard indices), and thus
K and these two measures should be interpreted in the same terms. The inequality implies thatK ! K 2K �A B A

, where Jn is uniquely attributed to the focal z. It follows thatJ K K ! 2K � J K K K / (2 � J K ) ! K / (2 �n A B B n A B A n A B

, which is in accord with equation (7), . Hence .A B A BJ K ) J ! J z 1 zn B n�1 n�1 n�1 n�1


