Vyhledávání
Pro vyhledávání stačí zadat i jen začátek slova. Pokud chcete vyhledat osobu podle jména i příjmení tak zadávejte ve tvaru "příjmení, jméno"PUBLIKACE
Adams, Stefan; Kotecký, Roman ; Müller, Stefan (2013): Finite range decomposition for families of gradient Gaussian measures
Journal of Functional Analysis, 264: 169–206
Biskup, Marek; Borgs, Christian; Chayes, J. T.; Kleinwaks, L.; Kotecký, Roman (2000): A general theory of Lee-Yang zeros in models with first-order phase transitions
Physical Review Letters, 84: 4794-8
Biskup, Marek; Borgs, Christian; Chayes, J. T.; Kleinwaks, L.; Kotecký, Roman (2004): Partition function zeros at first-order phase transitions: A general analysis
Commun. Math. Phys., 251: 79-131
Biskup, Marek; Borgs, Christian; Chayes, J. T.; Kotecký, Roman (2004): Partition function zeros at first-order phase transitions: Pirogov-Sinai theory
Jour. Stat. Phys., 116: 97-155
Biskup, Marek; Chayes, J. T.; Kotecký, Roman (2002): On the formation/dissolution of equilibrium droplets
Europhys. Letters, 60: 21-27
Biskup, Marek; Chayes, J. T.; Kotecký, Roman (2003): Critical region for droplet formation in the two-dimensional Ising model
Commun. Math. Phys., 242: 137-183
Biskup, Marek; Kotecký, Roman (2006): Forbidden gap argument for phase transitions proved by means of chessboard estimates
Commun. Math. Phys., 264: 631-656
Biskup, Marek; Kotecký, Roman (2007): Phase coexistence of gradient Gibbs states
Probability Theory and Related Fields, 139: 1-39
Biskup, Marek; Kotecký, Roman (2010): True nature of long-range order in a plaquette orbital model
Journal of Statistical Mechanics, P11001
Borgs, Christian; Kotecký, Roman (1990): A Rigorous Theory of Finite Size Scaling at First Order Phase Transitions,
Journ. Stat. Phys. 61, 79-119.
Borgs, Christian; Kotecký, Roman (1992): Finite-Size Effects at asymmetric first-order phase transitions,
Phys. Rev. Lett. 68, 1734-1737.
Dobrushin, Roland L.; Kotecký, Roman ; Shlosman, Senya (1992): The Wulff construction: a global shape from local interactions,
American Math. Soc., Translations Of Mathematical Monographs 104, Providence, Rhode Island.
Gawedzki, Krzysztof; Kotecký, Roman ; Kupiainen, Antti (1988): Coarse-Graining Approach to First-Order Phae Transitions,
Journ. Stat. Phys. 47 701-724.
Hryniv, O.; Kotecký, Roman (2001): Surface tension and the Ornstein-Zernike behaviour for the 2D Blume-Capel model
Journal of Statistical Physics, 106: 431-476
Huang, Yuan; Chen, Kun; Deng, Youjin; Jacobsen, Jesper Lykke; Kotecký, Roman ; Salas, J.; Sokal, A. D.; Swart, Jan M. (2013): Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q
In: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, roč. 87, č. 1, nestránkováno.
Chayes, J. T.; Chayes, Lincoln; Kotecký, Roman (1995): The Analysis of the Widom-Rowlinson Model by Stochastic Geometric Methods,
Comm. Math. Phys. 172, 551-569.
Kotecký, Roman (1989): Long range order for antiferromagnetic Potts models,
Phys. Rev. B31, 3088-3092.
Kotecký, Roman ; Lees, B. (2019): Staggered Long-Range Order for Diluted Quantum Spin Models
Journal Of Statistical Physics, 175(5), pp.972–986.
Kotecký, Roman ; Luckhaus, S. (2014): Nonlinear elastic free energies and gradient Young-Gibbs measures
Commun. Math. Phys., 326: 887-917
Kotecký, Roman ; Preiss, David (1986): Cluster Expansion for Abstract Polymer Models,
Comm. Math. Phys. 103 491-498.
Kotecký, Roman ; Salas, J.; Sokal, A. D. (2008): Phase transition in the 3-state Potts antiferromagnet on the diced lattice
Phys. Rev. Letters, 101
Kotecký, Roman ; Shlosman, Senya (1982): First-order transitions in large entropy lattice models,
Comm. Math. Phys. 83, 493-515.
Kotecký, Roman ; Sokal, A. D.; Swart, Jan M. (2014): Entropy driven phase transition in low-temperature antiferromagnetic Potts models
Commun. Math. Phys., 330: 1339--1394
Wang, J.-S.; Swendsen, Robert H.; Kotecký, Roman (1989): Antiferromagnetic Potts Models,
Phys. Rev. Lett. 63, 109-112.