Prague Fall Course
Letní škola
Preliminary program:
Roman Kotecký Cluster expansions, Onsager solution, interface.
Miloš Zahradník Pirogov-Sinai theory.
Dima Ioffe Local limit theorems (large deviations, moderate deviations and CLT) in the context of the high and low temperature Ising model. FKG, Lee-Yang theorem, Wulff construction.
Fabio Martinelli Stochastic dynamics, proofs of convergence to equilibrium.
Aernout van Enter Gibbs states, DLR, non-gibbsian states; connection with renormalization group and the complete analyticity program.
Adam Majewski Introduction to quantum statistical physics, quantum Lyapunov exponents.
Nilanjana Datta Low-temperature phase diagrams of quantum lattice systems.
Jacek Miekisz Nonperiodic states, tilings, quasicrystals.
Bálint Tóth Continuous symmetry breaking/reflection positivity/infrared bounds with particular emphasis on quantum spin models.
Christian Borgs Dobrushin states. Pirogov-Sinai theory for classical and quantum interfaces.
Anton Bovier Kac models, neural networks.